728x90
반응형

2025/10/09 2

Pandas에서 행과 열 선택: loc[], iloc[], at[], iat[]

Pandas에서 행과 열 선택: loc[], iloc[], at[], iat[]데이터 분석에서 특정 행과 열을 선택하는 것은 필수적인 과정입니다. Pandas에서는 loc[], iloc[], at[], iat[]을 제공하여 원하는 데이터를 효율적으로 선택할 수 있습니다. 이번 포스팅에서는 각 방법의 차이점을 예제와 함께 설명하겠습니다.1. 샘플 데이터 생성아래의 코드를 실행하여 샘플 DataFrame을 생성하겠습니다.import pandas as pd# 샘플 데이터 생성data = { "이름": ["김철수", "이영희", "박민준", "최다연", "정우성"], "나이": [25, 30, 22, 27, 35], "성별": ["남", "여", "남", "여", "남"], "점수": [9..

Python/Pandas 2025.10.09

NumPy 난수 생성 (random 모듈 사용)

NumPy 난수 생성 (random 모듈 사용)안녕하세요, "소프트웨어 공장"입니다! 오늘은 Python의 강력한 수치 계산 라이브러리인 NumPy에서 제공하는 random 모듈을 사용하여 난수를 생성하는 방법을 알아보겠습니다. 데이터 분석, 머신러닝, 시뮬레이션 등 다양한 응용 분야에서 난수는 필수적으로 사용됩니다. NumPy의 random 모듈은 이러한 작업을 효율적으로 수행할 수 있는 도구를 제공합니다.1. NumPy random 모듈 소개NumPy의 random 모듈은 난수를 생성하고 샘플링하는 데 유용한 함수들을 포함하고 있습니다. Python의 내장 random 모듈과 비교하여 다음과 같은 장점이 있습니다:빠른 실행 속도다양한 분포 지원 (정규분포, 이항분포, 푸아송분포 등)다차원 배열 지원사..

Python/NumPy 2025.10.09
728x90
반응형