반응형

Gradient descent 2

확률적 경사 하강법(SGD)과 배치 경사 하강법

확률적 경사 하강법(SGD)과 배치 경사 하강법딥러닝 모델을 학습할 때 가장 중요한 과정 중 하나는 최적화(Optimization)입니다. 최적화 과정에서 가장 널리 사용되는 알고리즘이 바로 경사 하강법(Gradient Descent, GD)입니다. 경사 하강법은 손실 함수의 기울기를 이용하여 가중치를 조정하고, 손실이 최소화되는 방향으로 모델을 업데이트하는 방식입니다.이번 글에서는 확률적 경사 하강법(Stochastic Gradient Descent, SGD)과 배치 경사 하강법(Batch Gradient Descent)의 개념, 차이점, 장단점에 대해 알아보고, Python을 활용하여 직접 구현해보겠습니다.1. 경사 하강법(Gradient Descent)이란?경사 하강법은 딥러닝 모델의 가중치를 최적..

경사 하강법(Gradient Descent)과 최적화 알고리즘 비교

경사 하강법(Gradient Descent)과 최적화 알고리즘 비교1. 개요딥러닝 모델을 훈련할 때 가장 중요한 개념 중 하나는 경사 하강법(Gradient Descent)입니다. 신경망의 가중치를 최적화하는 과정에서 사용되며, 손실 함수를 최소화하는 방향으로 학습이 진행됩니다. 그러나 경사 하강법에도 다양한 변형이 있으며, 각 방법은 특정한 장점과 단점을 가지고 있습니다. 이번 포스팅에서는 경사 하강법의 기본 개념을 이해하고, 다양한 최적화 알고리즘을 비교하여 실전에서의 선택 기준을 정리해보겠습니다.2. 경사 하강법(Gradient Descent) 개념2.1 경사 하강법이란?경사 하강법은 손실 함수(Loss Function) 를 최소화하기 위해 함수의 기울기를 따라 이동하는 최적화 기법입니다. 수학적으..

반응형